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We propose a method of increasing the apparent spatial resolution of an
existing liquid simulation. Previous approaches to this “up-resing” problem
have focused on increasing the turbulence of the underlying velocity field.
Motivated by measurements in the free surface turbulence literature, we
observe that past certain frequencies, it is sufficient to perform a wave sim-
ulation directly on the liquid surface, and construct a reduced-dimensional
surface-only simulation. We sidestep the considerable problem of generating
a surface parameterization by employing an embedding technique known
as the Closest Point Method (CPM) that operates directly on a 3D exten-
sion field. The CPM requires 3D operators, and we show that for surface
operators with no natural 3D generalization, it is possible to construct a
viable operator using the inverse Abel transform. We additionally propose
a fast, frozen core closest point transform, and an advection method for the
extension field that reduces smearing considerably. Finally, we propose two
turbulence coupling methods that seed the high-resolution wave simulation
in visually expected regions.
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1. INTRODUCTION

Despite much recent progress, it remains a challenge to simulate
large-scale, high-resolution liquids. The recently popular “up-res”
approach separates simulations into large- and small-scale details,
and runs separate algorithms for each scale. In addition to being
more efficient, imposing a one-way coupling between scales can
facilitate design. A user can interact with a fast, low-resolution sim-
ulation, and later add additional high-resolution detail in a way that
does not invalidate the low-resolution design. This approach has
been successfully applied to several natural phenomena, includ-
ing cloth simulations [Bergou et al. 2007] and single-phase smoke
simulations [Kim et al. 2008; Narain et al. 2008; Schechter and
Bridson 2008; Nielsen et al. 2009; Huang et al. 2011; Yuan et al.
2011]. However, it has been less successful for liquid simulation.
Practitioners have reported [Lait 2011] that applying single-phase
techniques to liquid simulations introduces undesirable artifacts and
does not create plausible new details.

We posit that the reason for this is that the physics being simulated
has been incomplete. Previous methods for increasing the resolu-
tion of liquid simulations [Narain et al. 2008; Jang et al. 2010; Yuan
et al. 2012] have assumed that if the turbulence of the underlying
fluid velocity field is increased, high-resolution surface dynamics
will follow. However, the literature on free surface turbulence, also
known as “wave turbulence” or “weak turbulence”, maintains that
the free surface, especially at high frequencies, possesses additional
dynamics that are not mere images of the underlying velocity field.
While the low-frequency components of the velocity field initiate
surface waves, many high-frequency details arise from the indepen-
dent oscillation of the surface membrane [Savelsberg and van de
Water 2008; Falcon 2010].

We present a method that captures these additional dynamics
by explicitly performing a wave simulation on the liquid surface.
In doing so, we reduce the volumetric problem to a surface-only
problem. We use the state-of-the-art in visual wave simulation, the
iWave algorithm [Tessendorf 2004b, 2004a]. As we are simulating
a scalar on a surface of rapidly changing topology, we immediately
encounter the problem of consistently parameterizing a deforming
surface. We sidestep this problem entirely by using a newly de-
veloped embedding method known as the Closest Point Method
(CPM) [Ruuth and Merriman 2008]. The CPM operates on a 3D
extension field instead of a 2D surface field, and thus requires no
surface parameterization. However, it requires the existence of 3D
spatial operators. Natural 3D analogs of 2D surface operators are
often available, such as the 5-point 2D and 7-point 3D Laplacians.
However, for many operators, such as the fractional Laplacian in
the iWave algorithm, no obvious 3D equivalent is available, and it
is unclear if the CPM can be used. We show that a viable CPM
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operator can be constructed by taking the inverse Abel transform of
the original surface operator.

The CPM has predominantly been used on rigid 3D objects,
where the cost of computing a closest point transform [Mauch 2003]
can be amortized. We instead deal with a deforming surface where
the transform is computed and advected every frame. In order to
prevent this from becoming the bottleneck, we propose an iterative
transform based on the Nacelle algorithm [Tessendorf 2011] that is
faster than fast marching-based methods [ Adalsteinsson and Sethian
2003] and more effective at maintaining sharp features. Lastly, we
propose two turbulence seeding methods that provide visually con-
sistent methods of coupling the high-resolution surface simulation
to the low-resolution volume simulation.

Our specific contributions are as follows:

—a method of constructing operators for the Closest Point Method
when no natural 3D operator is available;

—a fast, iterative Nacelle method for building the closest point
transform of a deforming surface;

—a frozen core version of the Nacelle method and an efficient
narrow-band advection method that improves surface details;

—two turbulence seeding strategies that introduce waves in visually
expected regions.

2. PREVIOUS WORK

Prior graphics work. Level set simulation of liquids was pio-
neered by Foster and Fedkiw [2001]. Since then, many techniques
have been proposed for simulating liquids with higher spatial reso-
lution. Recent works include coarse grid projections [Lentine et al.
2010], higher-order reinitialization methods [Heo and Ko 2010],
complementary Lagrangian meshes [Wojtan et al. 2009], and fast
tall cell methods [Chentanez and Miiller 2011]. Bargteil et al.
[2006a] developed a method for texturing such simulations and suc-
cessfully ran a reaction-diffusion simulation on the surface. How-
ever, significant surface parameterization problems arose, which
led to subsequent work [Bargteil et al. 2006b; Kwatra et al. 2007;
Narain et al. 2007] where the parameterization was synthesized
each step. A surface texture was then synthesized from exemplars;
no simulation took place. Our method sidesteps the parameteriza-
tion problem entirely and allows a nontrivial iWave simulation to
be performed on the surface.

One of the goals of our algorithm is to facilitate the design of
liquid animations, so it can also be considered a liquid control
algorithm. Many approaches, such as keyframes [McNamara et al.
2004; Shi and Yu 2005] and guiding shapes [Nielsen and Bridson
2011] have been developed to address this problem. Our method
can be used to add additional surface detail to the results of these
algorithms, so we consider them complementary.

A good survey of techniques for simulating ocean waves is avail-
able in Darles et al. [2011]. While these techniques give good re-
sults for scenes without interaction, we do a full 3D simulation
that automatically adds sources and handles obstacle interactions.
Other recent work on wave simulation has included the develop-
ment of fast, Lagrangian “wave particles” [ Yuksel et al. 2007], and
the addition of the FFT algorithm described by Tessendorf [2004b]
to a shallow water solver [Chentanez and Miiller 2010]. Several
previous authors have attempted to simulate waves on deforming
surfaces. Angst et al. [2008] simulated waves on a fixed character
mesh surface that does not undergo any topology changes. They
only simulated the traditional wave equation, not the iWave equa-
tion. Thiirey et al. [2010] also simulated the wave equation on a
Lagrangian mesh in order to capture surface tension effects. The
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focus of their method was on sheet breakup and large-scale insta-
bilities, so they did not achieve the fine-scale wave detail that we are
able to produce. Kim et al. [2009] simulated a vortex sheet along
the liquid surface to capture high-resolution interface effects. Again,
their approach initiated detailed sheet breakup, which is orthogonal
to the surface detail that we capture in this current work, and could
be combined with ours to achieve highly detailed liquids.

The closest work to ours is Patel et al. [2009], which per-
forms an orthogonal projection of a 2D iWave simulation onto a
3D river. This approach works best when the 3D liquid is well-
approximated by a 2D plane, which is a well-founded assumption
for rivers, but clearly not true for general liquids. Figure 4, for
example, would be difficult to capture without introducing sig-
nificant distortions, but is a trivial test case for our method. The
algorithm also requires the user to manually specify turbulence in-
jection sites, whereas we propose a method that injects turbulence
automatically.

We use the Closest Point Method (CPM) [Ruuth and Merriman
2008], a level-set-based, parameterization-free surface simulation
method, to perform our iWave simulation. The CPM is not the first
level-set-based method proposed for simulating surface phenomena
(see, e.g., previous variational formulations [Bertalmio et al. 2001;
Greer 2006]), but it sidesteps many of the complexities present in
previous methods, so we prefer it here. All of the level-set-based
methods require 3D generalizations of 2D surface operators, so
even if a variational method was employed, the 3D iWave kernel we
present in Section 3.3 would be needed. Other works have used the
CPM to simulate fire [Hong et al. 2010], the wave equation, and the
Navier-Stokes equations [Auer et al. 2012]. All of these works deal
with cases where the surface operators have obvious 3D analogs,
such as the gradient and Laplacian. To our knowledge, ours is the
first method that successfully uses an operator that is a nontrivial
3D generalization. Hong et al. [2010] apply the CPM to deforming
surfaces by propagating scalars between frames using the extension
field. We present a fast, iterative method of computing the extension
that could be used to accelerate their method, and detail-preserving
mechanisms that could further improve their results.

Prior physics work. Free surface turbulence is a well-studied
topic in physics and engineering, and many excellent survey papers
are available [Brocchini and Peregrine 2001; Dias and Kharif
1999]. Within this literature, it is well-established (see, e.g., Falcon
[2010]) that general hydrodynamic turbulence and free surface
turbulence are two distinct phenomena. The former follows the
Kolmogorov energy spectrum, and the latter the Kolmogorov-
Zakharov spectrum [Zakharov et al. 1992]. While the free surface
of a liquid responds to low-frequency eddies in the underlying
velocity field, it can also exhibit behavior indicative of a “surface
skin” layer [Brocchini and Peregrine 2001] that continually tears
and undergoes “surface renewal” [Komori et al. 1989].

In particular, Savelsberg and van de Water [2008] experimentally
observed that the correlation between the surface gradient and the
subsurface velocity field rapidly diverges in turbulent flows. This
indicates that the common approach of using the velocity field to
capture free surface turbulence [Narain et al. 2008; Jang et al. 2010;
Yuan et al. 2012] is insufficient. Savelsberg and van de Water [2008]
also established that the surface could be approximated as a set of
advected capillary-gravity wave sources, and concluded that “the
surface is most likely excited by the largest subsurface turbulence
scales only.” Motivated by their experimental results, we allow the
curvature induced by subsurface turbulence to inject waves into our
simulation, but then perform a separate, advected wave simulation
along the liquid surface.
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Fig. 1. An overview of the different steps of our simulation algorithm. We read in data from an existing level set solver and add additional surface detail by
performing a surface-only wave simulation. The final result can be used as a bump or displacement map during rendering.

3. A FREE SURFACE TURBULENCE ALGORITHM

In this section, we describe our algorithm for simulating turbulence
on a free surface. We still start with preliminaries on the Closest
Point Method (CPM) and iWave algorithms, show how they can
be unified, and then present the complete algorithm. A high-level
overview of our approach can be seen in Figure 1.

3.1 The Closest Point Method

The Closest Point Method [Ruuth and Merriman 2008] is an
embedding method for simulating partial differential equations
(PDEs) on arbitrary surfaces. As with other embedding meth-
ods, it works directly on 3D volumes that avoid the problems
of traditional surface-based simulation, such as the construction
of low-distortion surface parameterizations, and the development of
specialized surface-based operators such as the Laplace-Beltrami
operator [Wardetzky et al. 2007; Chuang et al. 2009]. While the al-
gorithm operates in 3D, it supports narrow banding, which allows it
to scale according to the complexity of the surface, not the volume.

Similar to previous embedding methods, the CPM operates on
the 3D extension field of the surface, which is constructed by as-
signing each grid point the scalar value of the nearest surface point.
Simulation proceeds by applying the 3D version of the desired PDE
to the extension field. For example, in the case of surface diffusion,
the familiar 7-point Laplacian stencil would be used instead of a
Laplace-Beltrami operator. More concretely, an explicit CPM for
diffusing a surface scalar u,p through 7' timesteps of size At on a
fixed surface mesh would proceed as shown in Algorithm 1.

ALGORITHM 1. diffuseUsingCPM(u5p)
1 begin

2 Build the closest point transform, C P, of u,p
3 | Build the extension field, uly = C P(usp)

4 fort= 1t T do

5 Wi = uhy + At - V2l

6 L Uit = CP(uip)

7 end

In this algorithm, V? corresponds to the 7-point Laplacian, and
CP interpolates and propagates the scalar values at grid points
adjacent to surface out to the entire volume. The algorithm is very
similar to a basic 3D explicit integration, with the key addition of the
extension step on line 6. Despite its apparent simplicity, the CPM
has been shown to produce the correct curved surface behavior. We
will not recap here the validations that have been performed on the
method (see, e.g., Macdonald et al. [2011] for a recent example),
and will instead introduce relevant details when we later construct
our 3D fractional Laplacian.

The CPM is not the first embedding method proposed for implicit
surfaces, as variational versions have been available for some time
[Bertalmio et al. 2001; Greer 2006]. Unlike the variational versions,
the CPM does not require the underlying PDE:s to be rewritten to in-
clude tangent plane projections that constrain the dynamics to level
sets near the interface. Greer [2006] described degeneracies that can
occur if the narrow-band boundary conditions are not carefully setin
a variational method, but no such nonphysical boundary conditions
are needed by the CPM. Even if a variational version is preferred,
all existing embedding methods require 3D generalizations for their
2D operators, so the results presented in Section 3.3 are still needed.
All of the methods require the construction of extension fields, so
the closest point transform we describe in Section 3.5 could also be
used to accelerate the variational approaches.

3.2 The iWave Algorithm

The iWave algorithm [Tessendorf 2004b] produces more realistic
water wave behavior than alternatives such as the traditional wave
equation, and is used extensively in production (see, e.g., Carlson
[2007], Flores and Horsley [2009], and Angelidis et al. [2011]). It
is derived from the linearized Bernoulli’s equation for irrotational
flow,

9

ar
where ¢ is the velocity potential, p is the pressure, and U is the
potential energy. It can be stated in undamped form as

-p—U, (¢Y)

0%h —

Here, 4 is the fluid height, 7 is time, g is the gravity magnitude,
and ~/—V? is a fractional Laplacian operator [Podlubny 1999;
Miller and Ross 1993]. Aside from the radical, it is very similar to
the traditional wave equation 32h/3t> = cV>h. The fractional term
arises because the gradient of the potential ¢ in Bernoulli’s equation
is constrained to be divergence-free, V2¢ = 0, and a squaring term
in the vertical direction & must be accounted for. For this reason,
it is also referred to as the vertical derivative operator. For further
details, see [Tessendorf 2004b, Section 3.2].

The fractional nature of the operator significantly complicates
its spatial discretization, because fractional derivatives usually have
nonlocal support, and the resulting operator is divergent in fre-
quency space due to the k> term, where k denotes the spatial fre-
quency. Tessendorf [2004b] addresses the first problem by imposing
a hard spatial cutoff, and the second by introducing a Gaussian “soft
cutoff” that suppresses the growth of the k? term. The final verti-
cal derivative operator G,p(r) is then stated in polar coordinates
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[Tessendorf 2008] as
Gap(r) = / e ™ Jy(kr)dk, 3)
0

where r is the radial coordinate, =" is the soft cutoff, and Jj is the
zeroth Bessel function of the first kind. The hard spatial cutoff is
realized by only evaluating Eq. (3) out to a user-specified r. Eq. (3)
is discretized into a convolution kernel using Algorithm 2.

ALGORITHM 2: iWave2DKernel(W, k)

Data: iWave2D is the convolution kernel, W is the spatial
width of the desired kernel, and &, is the maximum
desired wave frequency to be captured.

1 begin

2 iWave2D =0

3 h=|W/2]

4 for y = -h to h do

5 for x = -hto hdo

6

7

8

r =ty

for k = 0 to ky; do
| iWave2D(x, y)+ = ke Jo(kr)

end

b=

3.3 Building a 3D Vertical Derivative

In order to simulate iWave on a surface using the CPM, we need a
3D version of Eq. (3) and Algorithm 2. However, unlike the Lapla-
cian operator, the vertical derivative has no obvious 3D analog.
Indeed, the definition of the operator seems to be inherently sur-
face based, as the radical arises from taking the square root in the
normal direction. The salient spatial function in Eq. (3) is the Jy
Bessel function of the first kind, so a reasonable first attempt is
to replace it with the spherical Bessel function of the first kind,
Jo(r) = == = sinc(r). We found that generating a 3D kernel using
a simple, naive replacement of J, with j, results in an unstable
simulation and unusable results. More care is clearly needed in the
construction of the operator. The broader question is: what makes
a good CPM operator? Ruuth and Merriman [2008] reason that if
u3p is an extension of the scalar field u,p, then usp does not vary in
the normal direction, and so at the surface,

Vusp = Vsuop, “4)

where Vg denotes the 2D surface gradient. Therefore, usp will only
vary along the surface, and the Vs operator will only induce motion
in the surface tangent directions.

We examine this intuition in a slightly different form. Say we
have the scalar field u,p(x, y), and its extension u;p(x, y, 7). We
can state Eq. (4) in terms of a convolution about the origin with an
arbitrary operator D,

/ Dan(x, ¥) um(x, ) dx dy
X,y

= / Dsp(x, y, z) usp(x, y, z)dx dydz.
X,¥,2

Since usp is an extension field, it must be constant in some normal
direction. The direction is arbitrary, but for expository purposes, let
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us choose the z direction,

/ Dop(x, y) ump(x, y)dx dy
X,y

=/ uaD(x,y,O)dxdnym(x,y,z>dz.

By construction, fw up(x,y) = fx_yu_gD(x, v, 0), so if we as-
sume that D;p(x, y, z) is spherically symmetric, which is reason-
able given that the Laplacian and gradient operators also display

this form of symmetry, this further reduces to
Dyp(x,y) = /DsD(X, v,z)dz. 5)

Eq. (5) provides an answer to our original question: a good 3D CPM
operator should project down to the original 2D operator. Simple
inspection shows that this condition is met by the familiar 7-point
Laplacian and gradient operators. This can be viewed as ensuring
that a CPM simulation on the extension field of a 2D plane produces
the same results as a straight 2D simulation.

More formally, the projection of a spherically symmetric function
is an Abel transform. So, if a natural 3D operator is not available, we
can construct one by taking the inverse Abel transform. Fortunately,
the Jy function is both spherically symmetric and has a known Abel
transform pair [Bracewell 1999]

A7 (Jo(r) = isinc(r),
T

where A~! denotes the inverse Abel transform. Using this relation,
we can now build the inverse of the 2D iWave kernel:

A ( / kze’kzjo(kr)dk>:% / e ¥ sinc(kr)dk.  (6)
0 0

Note that an extra k appears due to the Jy(kr) term, and we have
folded it into the k* term. Eq. (6) can now be used to generate a 3D
vertical derivative kernel, provided that the removable singularity
at sinc(0) is properly handled. Our 3D vertical derivative operator
can now be stated as

] o0
Gan(r) = — f I e sinc(kr)dk. 0]
0

3.4 Reducing Projection Error

The Jy and j, functions arise from the fractional operator, so they
have nonlocal support that falls off relatively slowly in space. Some
projection error is therefore inevitable, as the 3D kernel only ex-
tends a finite amount in the normal direction (z in the preceding
equations), and the integral in Eq. (5) will be truncated to some
subinterval of [—o00, 00].

If a normal direction is known a priori, for example, if the surface
is known to be a static plane, then it is possible to correct for this
error. For example, the projection error €(x, y) for a single position
(x, y) in the z direction is

h
G(xa}’):DzD(% )’)_/ D3D(-x7 Vs Z)dzv (8)
—h

where i denotes the spatial cutoff of the kernel. If €(x, y) is sub-
tracted from an appropriate kernel cell, for example, Dsp(x, y, 0),
the projection error through (x, y) would be reduced to zero. Un-
fortunately, the normal direction generally changes according to the
liquid surface, so precomputing such corrections would introduce
undesirable anisotropies into the 3D kernel.



Fig. 2. Validation of our 3D iWave kernel: On the left is the result of
a standard planar 2D iWave simulation after a figure-eight-shaped mouse
input and 280 timesteps. On the right is the result of our 3D simulation
after the same number of timesteps on the same input. Our simulation
method introduces less than 1% error per timestep and produces visually
indistinguishable results.

However, it is possible to eliminate all projection error from
the cell with the largest weight, the center cell. As the kernel is
spherically symmetric, €(0, 0) is the same regardless of projection
direction. If €(0, 0) is subtracted from the center kernel cell, the
projection error through the center can be eliminated entirely. With
this correction, we found that the relative error of a kernel of width
1515 0.26% under the L, norm. The complete algorithm for gener-
ating the 3D iWave kernel is now shown in Algorithm 3. In all our
examples, we set k), = 10.

ALGORITHM 3: iWave3DKernel(W, kj,)

Data: W is the width of the desired kernel. ky, is the
maximum desired wave frequency to be captured.
iWave2D is the kernel computed by Alg. 2.

1 begin

2 iWave3D =0

3 h=|W/2]

4 for z =-htohdo

5 for y = -h to h do

6 for x = -h to h do

7 r=/xt4y2 422

8 for k = 0 to k) do

9 L iWave3D(x, y, 2)+ = ';—Se‘kz sinc(kr)
10 sum =0

11 for z = -htohdo

12 L sum + = iWave3D(0, 0, z)

13 iWave3D(0, 0, 0) — = iWave2D(0, 0)— sum

14 end

2D Validation. We have verified that in the simple 2D planar
case, our 3D kernel accurately reproduces the results of the original
2D iWave algorithm. We injected wave sources along a predefined
curve on a planar surface, and used them as inputs to both our 3D
solver and the original reference implementation of the 2D iWave
solver [Tessendorf 2004b]. As can be seen in Figure 2 as well as
the accompanying video, our approach is able to accurately repro-
duce the results obtained with the 2D iWave algorithm. To quantify
the error of our 3D iWave kernel, we computed the difference be-
tween the 2D and 3D simulations. We calculated the relative L,
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Fig. 3. Left to right: a sphere with a checkerboard surface; the center slice
of the sphere’s extension field, computed using fast marching; the same
slice computed using our Nacelle variant. Our variant is faster and does not
smear out the scalars. Computing the 2003 extension field took 3 minutes
and 20 seconds with fast marching, and 21 single-threaded seconds with our
algorithm.

error of the height fields, and found a per-timestep error between
0.15% and 0.25%.

3.5 A Fast Closest Point Transform

In many previous applications of the CPM, the surface mesh is
fixed, so the cost of computing the closest point transform of a
surface can be amortized over many timesteps. In our application,
the surface is known to be rapidly deforming, so no such amor-
tization is possible. Therefore, it is crucial that a fast method of
computing the closest point transform be devised. One approach
is to use fast marching-based methods [Adalsteinsson and Sethian
2003], but this approach involves a heap search that is difficult to
parallelize, and tends to smear out the scalar field. This smearing
is usually considered a feature of fast marching-based methods, as
it corresponds to rarefaction solutions of the Eikonal equation. In
our application, however, this smearing introduces spurious varia-
tions along the normal direction. The scan conversion algorithm of
Mauch [2003] is another possibility, but it uses the surface triangle
mesh, whereas we have a signed distance function that contains
richer geometric information.

We have found that the signed distance function of the existing
liquid simulation can be used to compute a fast, iterative, highly
parallelizable closest point transform. A first-order version of the
algorithm is similar to the method described by Losasso et al. [2006].
Given a signed distance function ¢, and the cell centers of the
computational grid, we can compute the closest point of a cell by
starting a particle, ¢;, at the cell’s center, and iterating along the
normal direction, ¢(c¢;) - V(c;), until ¢(¢;) < . We used the value
& = 107% in our computations.

The Nacelle algorithm of Tessendorf [2011] describes a second-
order method of warping one level set onto another. We can use
the same method to compute the closest point transform, which
corresponds to a warp of all points to the zero level set. The iteration
for each particle ¢; then becomes

I' = (Vo) Hpe)Ve(e)) /IVeo(e)]
A = —¢(c)/IVe(c)]
¢ = ci+(—1+(1+2~A~F)%)V¢T(Ci),

where H (-) denotes the Hessian operator. The Hessian can approach
zero in flat regions of the distance field and become problematic
near the medial axis, so we test if I' < ¢ at the beginning of each
iteration, and fall back to first-order iteration if the condition is
true. We found that this variant of the Nacelle algorithm is highly
parallelizable, and very fast. Results obtained via fast marching and
our Nacelle variant are shown in Figure 3.
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We found that implementing our Nacelle variant was quite sim-
ple, as it is essentially a particle iteration augmented by a second-
order correction. None of the heaps or quadratic solves involved
in fast marching are needed, and the final code is drastically
simpler than the canonical implementation of the Mauch algo-
rithm (https://bitbucket.org/seanmauch/stlib.). Unlike
fast marching methods, it also supports efficient lazy evaluation: the
extension value of any random cell can be queried and computed
in O(1) time without computing the values at all of the intervening
cells between the queried cell and the interface. We exploit this
feature when performing MacCormack advection in Section 3.6.

3.6 Building and Advecting the Extension Field

A frozen core extension field. Once the closest point trans-
form has been computed, a method must be selected to extend
surface values into the narrow band. Ruuth and Merriman [2008]
originally used fourth-order Newton divided differences, but sub-
sequent work derived fourth- and sixth-order Weighted Essentially
NonOscillatory (WENO) schemes [Macdonald and Ruuth 2009],
which we will refer to as WENO4 and WENOG. Too frequent reex-
tension can be computationally expensive and smear out the scalar
field unnecessarily. Greer [2006] observed that this is analogous
to the well-known problems of periodic velocity field reextension
and signed distance field reinitialization. We also encounter severe
smearing when reextending every timestep (Figure 4(a)), even when
using WENO4 or WENOG6. Never reextending the surface scalars
captures crisper features (Figure 4(b)), but it becomes unclear if
valid surface dynamics are being simulated. In both cases, undesir-
able anisotropies appear that reveal the underlying grid.

We found that a subtle modification fixes both of these problems.
When computing the extension field, we “freeze” the values that
are less than one grid cell away from the interface. These values
define the on-surface solution, and are accurately computed by the
solver, so they should be smeared out as little as possible. We refer
to this as a frozen core, as it freezes the values at the core of the
narrow band. This change significantly improves the crispness of
the results, and also suppresses the appearance of grid anisotropies,
as shown in Figure 4(c). This strategy is not entirely novel, as
Adalsteinsson and Sethian [2003] make use of a similar technique
when initializing their fast marching method. However, we have
not seen these substantial improvements noted anywhere else in the
literature, so they are worth emphasizing here.

Narrow-band MacCormack advection. We found that first-
order semi-Lagrangian advection [Stam 1999] smeared out details
captured by the CPM, and opted instead to use the MacCormack
advection scheme of Selle et al. [2008]. Two modifications signifi-
cantly improved our results. First, we replaced the linear interpolant
for the backtraces with the same WENO4 scheme used for extension
field construction. Second, we observed that extending and advect-
ing the surface field unnecessarily interpolated the field rwice: once
during extension, and again during advection. In order to remove
this unnecessary smearing, we construct the extension field using
nearest-neighbor interpolation. We use the Nacelle algorithm to
find the nearest surface point, but instead of interpolating grid val-
ues to obtain a final result, we simply grab the value from the nearest
grid cell. This essentially computes an antirarefaction solution that
suppresses all variation in the normal direction. As interpolation
still occurs during advection, the field is still smoothed, and we
did not observe any stairstepping artifacts. In addition to producing
significantly crisper surface details (see Figure 6), the removal of
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(a) With extension

(b) Without extension

(c) With frozen core extension

Fig.4. Weinserted a small circular wave at the top of a sphere and simulated
500 timesteps using different reextension strategies. Top to bottom: with
WENO4 reextension every timestep, with no reextension, and WENO4 re-
extension using the frozen core from Section 3.6 every step. The frozen core
result does not smear out the waves and suppresses grid anisotropies that
ruin the symmetry of the other cases.

the additional WENO4 call makes this approach computationally
less expensive.

The advection scheme must support narrow banding to avoid in-
troducing a volumetric bottleneck into the algorithm. Narrow band-
ing with first-order semi-Lagrangian advection is straightforward,
as backtraces can be computed for a band around the interface,
and the extension values for this band can be computed on-the-fly
using the Nacelle algorithm. However, the MacCormack method
advects the field forward and backwards to compute an error term.
The narrow bands for these stages differ, and computing the values
for the backwards stage is significantly more complex: they corre-
spond to an advected extension field, not just an extension field.
Therefore, we cannot obtain valid values for the backwards band
by simply applying the Nacelle algorithm. A obvious solution to
this problem would be to fatten the narrow band for the forward
stage according to the grid velocities, but in practice this results in
a significant amount of unnecessary computation.
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2) Mark forward
advection cells as A

3) Mark backward
‘advection cells as B

4) Add calls contributing

1) Identify namow
Iband calls o backward siep 1o set A

6) Advect set B 7) Advect narrow
calls forward Iband backward

8) Ermor comect
narrow band

Fig. 5. An overview of our narrow-band advection. For clarity, we only show one side of the narrow band, and use linear interpolation stencils. The active
cells for each step are highlighted, and the source cell with its velocity is shown in step 1. Note that both steps 2 and 4 are adding cells to set A, which contains
all cells that are initialized by extension in step 5. The cells from step 4 are needed to compute the backward advection in step 7.

Fig. 6. Top: Without frozen core extension and improved advection from
Section 3.6. Bottom: Same frame, with modifications from Section 3.6.
Note that the turbulent wake behind the block is lost entirely without our
improvements.

We instead performed a preliminary pass to determine the exact
set of cells needed to perform narrow-band MacCormack advection.
We traced the velocities forward to find all the cells needed for
the forward band, and traced these cells backwards to determine
the cells needed in the backwards band. We then constructed the
extension field for all of these cells and performed the advection.
We give an overview of the subtleties of this process in Figure 5.
The preliminary pass did not contain any calls to the WENO4
interpolant, and thus consisted mostly of fast integer operations that
consumed 5% to 6% of the running time. By comparison, when
we fattened the narrow band according to cell velocities, it doubled
the extension field building time. This build time becomes the main
bottleneck at high resolutions (see Table I), so this approach added
at least an additional 25% to the running time. Our two-pass method
is clearly more efficient.

3.7 Turbulence Seeding

Wave propagation is only perceived as realistic if waves are
seeded in visually expected regions. Following the intuition of
Kim et al. [2008], we identify underresolved regions of the fluid
surface where details are being lost. For liquids, this corresponds

to regions of high surface curvature, so we inject turbulence into
locations where the absolute principal surface curvatures are close
to the Nyquist limit of the current grid. This is in line with other
curvature-based strategies in liquid simulations, such as those
employed recently by Thiiery et al. [2010] and Yu et al. [2012] to
seed a (classical) surface wave simulation, as well as the particle
seeding strategy of Foster and Fedkiw [2001]. Intuitively, this
corresponds to regions where the “surface skin” layer of the liquid
tears and initiates surface oscillations.

We compute a source field for injecting surface waves by filtering
the maximum curvature values with a Catmull-Rom spline centered
at half the grid resolution, and a falloff value of one-fifth the grid
resolution. Once the seeding regions have been located, we set the
source term in these regions to the local Gaussian curvature in or-
der to reflect the variations occurring along the surface. We found
that the curvature computation method from Museth et al. [2002]
provided smooth, robust results for both the principal and Gaus-
sian curvatures. Note that all of these quantities can be computed
efficiently on the low-resolution grid.

We found that in some scenarios, adding this source field to
the height field was sufficient (Figures 8 and 10). However, if the
appearance of a higher apparent surface resolution is desired, con-
volving the source field once with the vertical derivative operator
creates the impression that scattering has occurred across a wider
range of scales, and produces higher-frequency waves. For this ad-
ditional convolution, we use a vertical derivative operator (Eq. (7))
integrated over the [2, kj,) domain, and use the extension field of the
result. This seeding method was used in Figure 7. We exclude the
[0, 2) range because these frequencies are close to the Nyquist fre-
quencies already present on the grid. We add the source field to the
height fields of both the current and previous timesteps in order to
convey the impression that the waves have persisted for some time,
but are currently scattering into higher frequencies. Otherwise, the
sources induce instantaneous velocities that produce visual spikes
in the height field. We have found that these two turbulence seeding
strategies, Gaussian curvature and convolved Gaussian curvature,
work well in practice. These are by no means the only strategies
possible, but we leave further exploration to future work.

The seeding strategy should be made aware of internal obsta-
cles in order to avoid injecting spurious turbulence. In Figure 7,
a large amount of surface curvature exists where the liquid wraps
around the central column. Much of this curvature is along the
liquid-obstacle interface, not the liquid-air interface, so injecting
turbulence in these regions is incorrect, and can result in overly
lively waves around the column. This problem is addressed by ze-
roing out the source term in regions surrounding internal obstacles.

3.8 The Complete Algorithm

We have now described all of the components of our algorithm.
The complete algorithm is shown in Algorithm 4. The extensions
performed on line 2 are the nearest-neighbor extensions described in
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Table I. All Timings are in Hours:Minutes:Seconds
Example | Base Res. | Upped Res. | Frame Total Time | Scaling | Convolution Extension Field | Disk I/O Advection
Time
Houdini 100° N/A 00:00:24 | 01:39:00 |- - - - -
Figure 10 | 2003 N/A 00:03:44 | 14:59:00 | 9.08 - - - -
4003 N/A 00:38:00 152:00:00* | 10.1 - - - -
100° 2003 00:00:12 | 00:48:14 |- 00:04:45 (10%) | 00:11:11 (23%) | 00:22:16 (46%) | 00:04:55 (10%)
1003 4003 00:00:58 | 03:55:00 |4.87 00:37:34 (16%) | 01:13:22 (31%) | 00:58:40 (25%) | 00:32:15 (14%)
100° 8003 00:05:29 21:56:15 5.60 03:28:43 (16%) | 06:27:35 (29%) | 04:43:19 (22%) | 02:49:09 (13%)
1003 10003 00:11:12 | 44:51:56 | 2.07 05:46:41 (13%) | 11:33:35 (26%) | 09:21:30 (21%) | 05:31:15 (12%)
Pouring 100° N/A 00:01:52 06:13:20 - - - - -
Figure 8 | 1003 2003 00:00:07 | 00:24:38 - 00:02:20 (9%) 00:03:27 (14%) | 00:14:12 (58%) | 00:01:54 (8%)
100° 4003 00:00:34 | 01:53:55 [4.62 00:13:58 (12%) | 00:28:13 (25%) | 00:38:51 (34%) | 00:13:29 (12%)
1003 8003 00:03:15 13:00:52 | 6.85 01:23:50 (11%) | 03:33:08 (27%) | 03:40:38 (28%) | 01:45:20 (13%)
Dam 100>%x50 | N/A 00:00:18 | 01:33:00 |- - - - -
Break 100%x50 | 200% x 100 | 00:00:06 | 00:30:44 |- 00:01:57 (6%) 00:02:45 (9%) 00:21:05 (69%) | 00:01:41 (5%)
Figure 7 | 1002x50 |400% x 200 | 00:00:21 01:45:33 3.43 00:12:30 (12%) | 00:23:47 (23%) | 00:38:13 (36%) | 00:11:56 (11%)
100%x50 | 800% x 400 | 00:02:48 11:13:09 6.38 01:20:12 (12%) | 02:52:27 (26%) | 02:50:46 (25%) | 01:35:31 (14%)

The Scaling column denotes the scaling relative to the timing in the preceding row. Rows marked N/A in the Upped Res. column are timings for direct Houdini or PhysBAM
simulations. The columns Convolution - Advection refer to fractions of the foral running time. The entry * is the projected time based on 100 frames. The Houdini, Pouring, and
Dam Break examples were respectively run for 240, 200, and 300 timesteps. The Houdini and PhysBAM timings included Disk I/O, so they have been included in timings of our
algorithm to facilitate comparisons.

Fig.7. A 100% x 50 PhysBAM simulation, up-resed to 800? x 400. The left half of each image shows the original simulation, and the right shows our up-resed
version. Our simulation took roughly 10x the time of the original, whereas a brute-force simulation would take roughly 512, that is, 83, the time. The source
and height values around the column were clamped to zero as respectively described in Section 3.7 and Section 4.

Section 3.6, while the extensions on lines 6 and 8 use the WENO4
interpolant. As the iWave algorithm uses explicit integration, the
surface wave simulation is run for 7 user-specified substeps for

every step of the coarse simulation. We found that setting 7 = 5
worked well in all of our examples. Line 11 encodes the Leapfrog
scheme from Tessendorf [2004b].
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Fig. 8. A 100> PhysBAM simulation, up-resed to 800°. The left half of each image shows the original simulation, and the right shows our up-resed version.
The 8 up-resing only took approximately twice the time of the original simulation.

4. DISCUSSION AND RESULTS

The iWave algorithm uses the “deep water” approximation & >
A, where h is the water depth and A is the wave length. As we
are simulating high frequencies, our As are quite small, so this
approximation is valid even if the liquid is globally shallow. We
note that this “relatively deep” approximation is fairly common
in the fluid mechanics literature, and some practitioners [Johnson
1997] prefer to use the terms “short” and “long” waves in lieu of
“deep” and “shallow” in order to avoid any confusion. If alternate
dispersion relations are desired, Eq. (7) can be scaled using the
exact same terms described in Tessendorf [2004b].

Implementation. We ran all of our simulations on a 12-core
2.66 Ghz Mac Pro with 96GB of memory. All of our simulations
fit into memory, so we did not need to use a hierarchical or blocked
data structure. However, we expect that such structures would yield
additional speedups due to improved memory locality. We used
the WENO4 interpolant [Macdonald and Ruuth 2008], which has
a stencil width of four. The more expensive WENOG6 was also
tested, but it did not improve the results sufficiently to justify the
additional computation. We used a 3D iWave kernel (En. (7)) with
a stencil width of 15. Reducing its spatial extent would reduce the

running time, but at the cost of reduced wave propagation speeds. We
used OpenMP to parallelize the convolution, Nacelle computation,
and extension field computation stages of our algorithm. While we
parallelized the most computationally intensive functions, the entire
algorithm can be run in parallel, so it is an excellent candidate for
GPU acceleration. We found that the obstacle interaction method
of the original iWave algorithm, which set the height values on the
interior of obstacles to zero, worked well in our 3D generalization.
No additional considerations were needed. All of our results were
rendered using a modified version of PBRT [Pharr and Humphreys
2010] that read in the height fields from our simulations as solid
textures and then used them as bump maps. The solid texture lookup
function in PBRT was modified to use the WENO4 interpolant.

Houdini test. We compared both the scalability and quality
of our algorithm to the Houdini simulation from Lait [2011]. We
used the Houdini 12 solver, which utilizes a parallel Preconditioned
Conjugate Gradient solver, and collected timing information for the
scene at the resolutions of 100°, 200%, and 400°. At the highest
resolution, the simulation took nearly a week, which is totally im-
practical for production. The overall motion of the liquid clearly
changed between resolutions.
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Fig. 9. Top: iWave kernel Bottom: Traditional wave equation. When the
traditional wave kernel is used, usesul results are obtained, but the waves
are not as sharp, and tend towards a preferred frequency.

ALGORITHM 4: surfaceWaves(¢', v/, CP"~!, h', h'™)

Data: ¢' and v’ are the current level set and velocity field of
the coarse simulation; C P’ is the closest point
transform of timestep ¢, i’ is the surface height at
timestep ¢; « is a damping coefficient, T is the number
of substeps, At is the surface simulation timestep size.

1 begin

2 h! = CPt—l(ht), htfl — CPt—l(ht—l)

3 Advect h' and h'~! using v'.

4 Build closest point transform of ¢’, C P’.
5 source = filtered curvature of ¢’, convolved by Eqn. 7.
6 source = C P'(source)

7 fori=11tTdo

8 h' =CP!'(h'), h"~' = CP'(h'™Y)

9 d = h' convolved by Eqn. 7
10 temp = h'
1 W = W“fﬁ# + source — d
12 h'~! = temp + source
13 Clear the source field if i = 1
14 end

By comparison, our solver was able to up-res the 100* simulation
to 2003 in less than half of the time of the base simulation. When
comparing our results to the direct 200° solution, we observed that
our algorithm captured higher-frequency motions (Figure 10). The
main bottleneck in the simulation at this resolution was writing
the large volume files to disk, which took up 46% of the run-
ning time. Using a sparse volume data structure, or an integrated
simulation-renderer solution, would yield additional speedups. We
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also up-resed the 100° simulation to 400%, 800%, and 10003. The
800* and 1000° simulations in particular captured extremely de-
tailed surface motion, and would take months for the Houdini 12
solver to compute. Disk I/O remained one of the bottlenecks, respec-
tively taking 25%, 22%, and 21% of the running times. Convolution
and extension field construction times also become more significant,
which suggests that more aggressive parallelization could yield fur-
ther speedups.

The running time exhibits inferior scaling when increasing from
4003 to 800°, though the scaling is still significantly better than the
greater than 8 scalings observed for the direct volumetric solvers.
The disk I/O does not appear to be solely responsible for this, as
the convolution and extension field stages also exhibit roughly this
scaling. Most likely the memory traffic from the large volumes is
saturating the bus, which further suggests that investigating high-
bandwidth architectures such as a GPU might be fruitful.

PhysBAM tests. Our algorithm is agnostic to the source of
the level set data, so Figures 7 and 8 show the results of running
our algorithm on two simulations produced using the PhysBAM
code release [Dubey et al. 2011]. In keeping with our goal of up-
resing, we again ran the simulation at relatively coarse 100° and
100% x 50 resolutions. The simulations were run single-threaded,
as the multithreaded version of the PhysBAM release is listed as
“experimental”. We expect that a multithreaded implementation
would produce timings competitive with the Houdini solver.

We observed timing breakdowns and scalings that were similar
to the Houdini example. Disk I/O dominates initially, but decreases
to roughly a quarter of the running time at higher resolutions. The
same decrease in scaling at 800° is also observed. In the “Dam
Break” example (Figure 7), we were able to up-res the simulation
by a factor of four along each spatial axis using approximately the
same amount of time as the original simulation, and in the “Pouring”
example (Figure 8) in less time than the original simulation.

Other wave kernels. Once the components of our turbulence
algorithm are in place, it becomes straightforward to experiment
with other models of wave motion. We ran the “Dam Break” exam-
ple using the traditional wave equation instead of the iWave kernel
in Figure 9. The traditional wave equation still gives useful results,
but the smaller kernel introduced a smaller timestep size, and the
final results tended to suppress higher-frequency waves. However, if
the user prefers this “look”, we found that it could be achieved with
minimal code modification. Other models, such as the Korteweg-de
Vries and nonlinear Schrodinger equations [Johnson 1997] could
also be used to achieve alternate looks.

The importance of damping. We found that the damping pa-
rameter, o in Algorithm 4, had a significant impact on the quality
of the final results. For less damped simulations, 0 < o < 0.2,
the waves persisted longer than expected and produced a distract-
ing “memory” effect. Higher dampings, 0.2 < a < 0.4, produced
behavior more in line with perceptual expectations. This is in agree-
ment with the default setting of @ = 0.3 in the original 2D iWave
implementation [Tessendorf 2004b]. A comparison of various «
settings can be seen in Figure 11 and the supplemental video.

5. CONCLUSIONS AND FUTURE WORK

We have described an efficient, closest point method of increasing
the apparent spatial resolution of an existing liquid simulation. We
have addressed two main obstacles to performing this in a Eulerian
setting: the construction of a 3D iWave operator, and the efficient
extension of surface scalars. We have additionally described
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Fig. 10. In reading order: Original 100% Houdini simulation, 2, 4, 8, and 10x up-res, and direct 200° Houdini simulation. Note how even at 2x up-res,

higher-frequency waves than those in the direct 2003 solution are captured.

Fig. 11. Different settings for the damping «. Left to right: « = 0.1, 0.2, 0.3 and 0.4. Waves persist for too long for low dampings, but can die off too quickly

before contributing any detail with high dampings.

methods for maintaining simulation details, and proposed two
turbulence seeding methods. The algorithm can produce surface
features in running times competitive with, and sometimes superior
to, the original base simulation. We have used our algorithm to
simulate liquids containing detailed, high-frequency motion that,
to our knowledge, have not been captured by any previous method.

Since we are dealing specifically with the problem of “up-resing”
aliquid, our algorithm only performs a one-way coupling. It remains
to be seen if the higher-frequency detail can be coupled back to
the coarse simulation, as was done in Thiirey et al. [2010]. Our
algorithm only requires signed distance and velocity fields as inputs,
so it could be applied to animated meshes, as was done in Angst
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etal. [2008], by computing the signed distance field of the mesh and
extrapolating velocities from the vertices. For particle-based liquid
simulations, a distance function such as the one proposed by Zhu
and Bridson [2005] could provide a basis for our approach. While
an implicit version of the CPM [Macdonald and Ruuth 2009] would
allow our algorithm to take larger timesteps, modifications would be
needed to the Leapfrog scheme used by the iWave algorithm. Such
a scheme could significantly improve the efficiency of simulating
high phase-velocity capillary waves. In Section 3.3, we imposed
a physically consistent spherical symmetry constraint on the 3D
kernel. Relaxing this assumption presents opportunities for motif-
based stylizations such as those in Ma et al. [2009].

We have shown that CPM surface physics can be viewed in
terms of an Abel transform, and that surface scalar extension and
convolution become bottlenecks at high resolutions. There is a rich
body of literature surrounding the Fourier-Abel-Hankel transform
cycle [Bracewell 1999], so there may be a signal processing
approach that can accelerate these stages. Finally, we have used the
inverse Abel transform to generalize one nontrivial 2D operator, the
fractional Laplacian, to 3D. We are confident that this methodology
will be useful in making other surface-only operators compatible
with the CPM.
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